Linear recurrences with polynomial coefficients

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Definite Sums as Solutions of Linear Recurrences With Polynomial Coefficients

We present an algorithm which, given a linear recurrence operator L with polynomial coefficients, m ∈ N \ {0}, a1, a2, . . . , am ∈ N \ {0} and b1, b2, . . . , bm ∈ K, returns a linear recurrence operator L ′ with rational coefficients such that for every sequence h,

متن کامل

Bounds for Linear Recurrences with Restricted Coefficients

This paper derives inequalities for general linear recurrences. Optimal bounds for solutions to the recurrence are obtained when the coefficients of the recursion lie in intervals that include zero. An important aspect of the derived bounds is that they are easily computable. The results bound solutions of triangular matrix equations and coefficients of ratios of power series.

متن کامل

Linear Recurrences with Polynomial Coefficients and Computation of the Cartier-Manin Operator on Hyperelliptic Curves

We improve an algorithm originally due to Chudnovsky and Chudnovsky for computing one selected term in a linear recurrent sequence with polynomial coefficients. Using baby-steps / giant-steps techniques, the nth term in such a sequence can be computed in time proportional to √ n, instead of n for a naive approach. As an intermediate result, we give a fast algorithm for computing the values take...

متن کامل

Linear Recurrences with Polynomial Coefficients and Application to Integer Factorization and Cartier-Manin Operator

We study the complexity of computing one or several terms (not necessarily consecutive) in a recurrence with polynomial coefficients. As applications, we improve the best currently known upper bounds for factoring integers deterministically, and for computing the Cartier-Manin operator of hyperelliptic curves.

متن کامل

Exact linear modeling with polynomial coefficients

Given a finite set of polynomial, multivariate, and vector-valued functions, we show that their span can be written as the solution set of a linear system of partial differential equations (PDE) with polynomial coefficients. We present two different but equivalent ways to construct a PDE system whose solution set is precisely the span of the given trajectories. One is based on commutative algeb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Complexity

سال: 2004

ISSN: 0885-064X

DOI: 10.1016/j.jco.2003.08.011